Product Certification&
    Enterprise Certification

  • Mr.Leader Biogroup
    Tel: 86-029-68895030

  • Ms.Kelly
    Sales manager
    Tel: 029-68569962

  • Mobile:86-029-68895030
  • Tel:86-029-68895030
  • Fax:86-029-68569961
  • URL:http://www.leaderbio-ingredients.com
  • Province/state:Shaanxi
  • City:Xi'an
  • Street:Aerospace Economic & Technical Development Zone, Chang'an District,Xi'an,China
  • MaxCard:
Home > Products >  China Largest Manufacturer factory sales 5-Aminolevulinic Acid CAS 106-60-5

China Largest Manufacturer factory sales 5-Aminolevulinic Acid CAS 106-60-5 CAS NO.106-60-5

  • FOB Price: USD: 1.00-2.00 /Kilogram Get Latest Price
  • Min.Order: 500 Kilogram
  • Payment Terms: L/C,D/A,D/P,T/T,MoneyGram,Other
  • Available Specifications:

    AAAAA(50-100)KilogramAAAAA(100-500)Kilogram

  • Product Details

Keywords

  • 5-Aminolevulinic Acid
  • 5-Aminolevulinic Acid
  • 106-60-5

Quick Details

  • ProName: China Largest Manufacturer factory sal...
  • CasNo: 106-60-5
  • Molecular Formula: 106-60-5
  • Appearance: white powder
  • Application: Pharm chemicals industry
  • DeliveryTime: 3-5 days
  • PackAge: 25KG/Drum
  • Port: Shanghai Guangzhou Qingdao Shenzhen
  • ProductionCapacity: 20 Metric Ton/Month
  • Purity: 99%
  • Storage: 2-8°C
  • Transportation: By air /Sea/ coruier
  • LimitNum: 500 Kilogram
  • Heavy metal: 10PPM
  • Color: white
  • Melting point: ≥350°C
  • Boiling point: 363.24°C (rough estimate)
  • density: 1.667
  • solubility: 1 M NaOH: 10 mg/mL, dark green
  • Water Solubility: <0.1 g/100 mL at 21 oC
  • Stability: Stable. Combustible. Incompatible with...

Superiority

                                PRODUCT DETAILS       

5-Aminolevulinic acid Basic information
Product Name: 5-Aminolevulinic acid
Synonyms: 4-Carboxy-2-oxobutylamine;4-Oxo-5-aminopentanoic acid;5-amino-4-keto-valeric acid;5-azanyl-4-oxo-pentanoic acid;5-amino-4-oxo-pentanoicaci;Kerastick;5-AMinelevulic acid (5-ALA);5-Aminolevulinic acid price
CAS: 106-60-5
MF: C5H9NO3
MW: 131.13
EINECS: 203-414-1
Product Categories: Photodynamic Therapy Of Cancer
Mol File: 106-60-5.mol
5-Aminolevulinic acid Structure
 
5-Aminolevulinic acid Chemical Properties
Melting point  118-119 °C
Boiling point  242.42°C (rough estimate)
density  1.3121 (rough estimate)
refractive index  1.4300 (estimate)
storage temp.  2-8°C(protect from light)
pka 4.05(at 25℃)
CAS DataBase Reference 106-60-5(CAS DataBase Reference)
EPA Substance Registry System Pentanoic acid, 5-amino-4-oxo- (106-60-5)
 
Safety Information
HS Code  29225090
MSDS Information
 
5-Aminolevulinic acid Usage And Synthesis
Description 5-aminolevulinic acid is the simplest delta-amino acid in which the hydrogens at the gamma position are replaced by an oxo group. It is metabolised to protoporphyrin IX, a photoactive compound which accumulates in the skin. Used (in the form of the hydrochloride salt)in combination with blue light illumination for the treatment of minimally to moderately thick actinic keratosis of the face or scalp. It has a role as a photosensitizing agent, an antineoplastic agent, a dermatologic drug, a prodrug, a plant metabolite, a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is a delta-amino acid and a 4-oxo monocarboxylic acid. It derives from a 4-oxopentanoic acid. It is a conjugate base of a 5-ammoniolevulinic acid. It is a conjugate acid of a 5-aminolevulinate. It is a tautomer of a 5-ammoniolevulinate.
Originator Levulan Kerastick,DUSA Pharmaceuticals Inc.
Uses 5-Aminolevulinic acid (ALA), a nonprotein amino acid involved in tetrapyrrole synthesis, has been widely applied in agriculture, medicine, and food production.
5-Aminolevulinic acid (5-ALA) is an intermediate in heme biosynthesis and is useful in cancer treatment. It is a non-protein amino acid. 5-ALA also has applications in the field of agriculture. It is being studied as an inducing reagent for protoporphyrin IX (PPIX) dependent fluorescence diagnosis of metastatic lymph nodes. 5-ALA is used for photodynamic therapy of diseases, such as Paget′s disease and HPV infection-associated cervical condylomata acuminata.
Intermediate in heme biosynthesis.
Indications Aminolevulinic acid (ALA HCl, Levulan Kerastick) is indicated for the treatment of nonhyperkeratotic actinic keratosis of the face and scalp. It has two components, an alcohol solution vehicle and ALA HCl as a dry solid. The two are mixed prior to application to the skin. When applied to human skin, ALA is metabolized to protoporphyrin, which accumulates and on exposure to visible light produces a photodynamic reaction that generates reactive oxygen species (ROS).The ROS produce cytotoxic effects that may explain therapeutic efficacy. Local burning and stinging of treated areas of skin due to photosensitization can occur.
Manufacturing Process 1) Oxidation Step
2.27 g (10.0 mmol) of N-furfurylphthalimide was charged into a three-necked glass flask equipped with an oxygen feed tube, a thermometer, and a reflux condenser, and dissolved in 100 ml of anhydrous pyridine. After the addition of 7.0 mg of Rose Bengal, oxygen gas was fed at a rate of 20 ml/min at 10°- 20°C under irradiation by light. A 27 W white fluorescent lamp was used as a light source and the radiation was performed from the outside of the flask. After 7 hours, the irradiation was terminated and the pyridine was evaporated under reduced pressure to obtain 2.47 g of a light brown, semi-crystalline product.
2) Reduction Step (Hydrogenation)
2.00 g of the semi-crystalline solid obtained in (1) was dissolved in 40 ml of methanol and stirred at 50°C in a hydrogen atmosphere under atmospheric pressure in the presence of 200 mg of 5% palladium-on-carbon catalyst.
After five hours, the reaction was terminated and the mixture was allowed to cool to room temperature. The catalyst was removed by filtration and methanol was evaporated to obtain 2.11 g of white crystals.
The crystals were identified to be 5-phthalimidolevulinic acid by NMR analysis. The yield was 97%.
3) Hydrolysis Step
100 ml of 6 N hydrochloric acid was added to 2.11 g of the white crystals (2), and the mixture was heated under reflux for 5 hours.
After evaporating the hydrochloric acid under reduced pressure, a brown solid product was obtained and dissolved in ethanol. Acetone was added to the solution and the crystals produced were collected by filtration to obtain 0.689 g of 5-aminolevulinic acid hydrochloride. The yield based on Nfurfurylphthalimide was 51%.
NMR spectrum data conformed to 5-aminolevulinic acid hydrochloride
Therapeutic Function Photosensitizer
Biological Activity 5-Aminolevulinic acid (5-ALA) is a precursor in the biosynthesis of porphyrins, including heme. The conversion of 5-ALA to protoporphyrins within tissues produces a photosensitive target that produces reactive oxygen species upon exposure to light.1 In this way, it is used in photodynamic therapy for a range of dermatological conditions, cancers, and other diseases. Also, oral administration of 5-ALA leads to the preferential accumulation of the fluorescent molecule protoporphyrin IX within certain types of cancer cells. This allows fluorescence-based identification of tumor tissue for accurate resection of diseased tissue.
Enzyme inhibitor This key metabolic precursor (FW = 131.13 g/mol; CAS 106-60-5; pKa values = 4.05 and 8.90 at 25°C; Symbol: ALA), also known as daminolevulinic acid, is essential for the biosynthesis of metal ion-binding tetrapyrrole ring systems (porphyrins, chlorophylls, and cobalamins). In non-photosynthetic eukaryotes (animals, insects, fungi, protozoa, and alphaproteobacteria), d-aminolevulinic acid is produced by the enzyme ALA synthase, using glycine and succinyl CoA as substrates. In plants, algae, bacteria, and archaea, it is produced from glutamyl-tRNA and glutamate-1-semialdehyde. 5-Aminolevulinic acid inhibits (R)-3-amino-2- methylpropionate:pyruvate aminotransferase. ALA Phototherapy: Protoporphyrin IX, the immediate heme precursor is a highly effective tissue photosensitizer that is synthesized in four steps from 5- aminolevulinic acid. ALA synthesis is regulated via a feedback inhibition and gene repression mechanism linked to the concentration of free heme. In certain cell and tissue types, addition of exogenous ALA bypasses these regulation mechanisms, inducing uptake and synthesis of photosensitizing concentrations of Protoporphyrin IX, or PpIX. Topical application of ALA to certain malignant and non-malignant skin lesions, for example, can induce a clinically useful degree of lesion-specific photosensitization (e.g., superficial basal cell carcinomas show high response rate (~79%) after a single phototherapy treatment). ALA also induces localized tissue-specific photosensitization, when injected intradermally. In this sense, ALA and its methyl ester (methyl aminolevulinate, or MAL; trade name: Metvix ) are prodrugs that increase the amounts of the active drug (PpIX).
 
5-Aminolevulinic acid Preparation Products And Raw materials
Raw materials ROSE BENGAL-->Palladium hydroxide
Preparation Products SUCCINALDEHYDIC ACID-->2,5-Piperidinedione-->COPROPORPHYRIN III TETRAMETHYL ESTER-->5-Aminolevulinic acid methyl ester hydrochloride



                                                                         About US 


Leader Biochemical Group is a large leader incorporated industry manufacturers and suppliers of advanced refined raw materials From the year of 1996 when our factory was put into production to year of 2020, our group has successively invested in more than 52 factories with shares and subordinates.We focus on manufacture Pharm & chemicals, functional active ingredients, nutritional Ingredients, health care products, cosmetics, pharmaceutical and refined feed, oil, natural plant ingredients industries to provide top quality of GMP standards products.All the invested factories' product lines cover API and intermediates, vitamins, amino acids, plant extracts, daily chemical products, cosmetics raw materials, nutrition and health care products, food additives, feed additives, essential oil products, fine chemical products and agricultural chemical raw materials And flavors and fragrances. Especially in the field of vitamins, amino acids, pharmaceutical raw materials and cosmetic raw materials, we have more than 20 years of production and sales experience. All products meet the requirements of high international export standards and have been recognized by customers all over the world. Our manufacture basement & R&D center located in National Aerospace Economic & Technical Development Zone Xi`an Shaanxi China. Now not only relying on self-cultivation and development as well as maintains good cooperative relations with many famous research institutes and universities in China. Now, we have closely cooperation with Shanghai Institute of Organic Chemistry of Chinese Academy of Science, Beijing Institute of Material Medical of Chinese Academy of Medical Science, China Pharmaceutical University, Zhejiang University. Closely cooperation with them not only integrating Science and technology resources, but also increasing the R&D speed and improving our R&D power. Offering Powerful Tech supporting Platform for group development. Keep serve the manufacture and the market as the R&D central task, focus on the technical research.  Now there are 3 technology R & D platforms including biological extract, microorganism fermentation and chemical synthesis, and can independently research and develop kinds of difficult APIs and pharmaceutical intermediates. With the strong support of China State Institute of Pharmaceutical Industry (hereinafter short for CSIPI), earlier known as Shanghai Institute of Pharmaceutical Industry (SIPI), we have unique advantages in the R & D and industrialization of high-grade, precision and advanced products.  Now our Group technical force is abundant, existing staff more that 1000 people, senior professional and technical staff accounted for more than 50% of the total number of employees, including 15 PhD research and development personnel, 5 master′ S degree in technical and management personnel 9 people. We have advanced equipment like fermentation equipment and technology also extraction, isolation, purification, synthesis with rich production experience and strict quality control system, According to the GMP required, quickly transforming the R&D results to industrial production in time, it is our advantages and our products are exported to North and South America, Europe, Middle East, Africa, and other five continents and scale the forefront in the nation, won good international reputation.  We believe only good quality can bring good cooperation, quality is our key spirit during our production, we are warmly welcome clients and partner from all over the world contact us for everlasting cooperation, Leader will be your strong, sincere and reliable partner in China.

                                                                      Our Group profiles



Our Factories production lines

                                                   Our Factories R&D ability

                        Our Factories warehouse 

                

Details

                                                       Product information

5-Aminolevulinic acid Basic information
Product Name: 5-Aminolevulinic acid
Synonyms: 4-Carboxy-2-oxobutylamine;4-Oxo-5-aminopentanoic acid;5-amino-4-keto-valeric acid;5-azanyl-4-oxo-pentanoic acid;5-amino-4-oxo-pentanoicaci;Kerastick;5-AMinelevulic acid (5-ALA);5-Aminolevulinic acid price
CAS: 106-60-5
MF: C5H9NO3
MW: 131.13
EINECS: 203-414-1
Product Categories: Photodynamic Therapy Of Cancer
Mol File: 106-60-5.mol
5-Aminolevulinic acid Structure
 
5-Aminolevulinic acid Chemical Properties
Melting point  118-119 °C
Boiling point  242.42°C (rough estimate)
density  1.3121 (rough estimate)
refractive index  1.4300 (estimate)
storage temp.  2-8°C(protect from light)
pka 4.05(at 25℃)
CAS DataBase Reference 106-60-5(CAS DataBase Reference)
EPA Substance Registry System Pentanoic acid, 5-amino-4-oxo- (106-60-5)
 
Safety Information
HS Code  29225090
MSDS Information
 
5-Aminolevulinic acid Usage And Synthesis
Description 5-aminolevulinic acid is the simplest delta-amino acid in which the hydrogens at the gamma position are replaced by an oxo group. It is metabolised to protoporphyrin IX, a photoactive compound which accumulates in the skin. Used (in the form of the hydrochloride salt)in combination with blue light illumination for the treatment of minimally to moderately thick actinic keratosis of the face or scalp. It has a role as a photosensitizing agent, an antineoplastic agent, a dermatologic drug, a prodrug, a plant metabolite, a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is a delta-amino acid and a 4-oxo monocarboxylic acid. It derives from a 4-oxopentanoic acid. It is a conjugate base of a 5-ammoniolevulinic acid. It is a conjugate acid of a 5-aminolevulinate. It is a tautomer of a 5-ammoniolevulinate.
Originator Levulan Kerastick,DUSA Pharmaceuticals Inc.
Uses 5-Aminolevulinic acid (ALA), a nonprotein amino acid involved in tetrapyrrole synthesis, has been widely applied in agriculture, medicine, and food production.
5-Aminolevulinic acid (5-ALA) is an intermediate in heme biosynthesis and is useful in cancer treatment. It is a non-protein amino acid. 5-ALA also has applications in the field of agriculture. It is being studied as an inducing reagent for protoporphyrin IX (PPIX) dependent fluorescence diagnosis of metastatic lymph nodes. 5-ALA is used for photodynamic therapy of diseases, such as Paget′s disease and HPV infection-associated cervical condylomata acuminata.
Intermediate in heme biosynthesis.
Indications Aminolevulinic acid (ALA HCl, Levulan Kerastick) is indicated for the treatment of nonhyperkeratotic actinic keratosis of the face and scalp. It has two components, an alcohol solution vehicle and ALA HCl as a dry solid. The two are mixed prior to application to the skin. When applied to human skin, ALA is metabolized to protoporphyrin, which accumulates and on exposure to visible light produces a photodynamic reaction that generates reactive oxygen species (ROS).The ROS produce cytotoxic effects that may explain therapeutic efficacy. Local burning and stinging of treated areas of skin due to photosensitization can occur.
Manufacturing Process 1) Oxidation Step
2.27 g (10.0 mmol) of N-furfurylphthalimide was charged into a three-necked glass flask equipped with an oxygen feed tube, a thermometer, and a reflux condenser, and dissolved in 100 ml of anhydrous pyridine. After the addition of 7.0 mg of Rose Bengal, oxygen gas was fed at a rate of 20 ml/min at 10°- 20°C under irradiation by light. A 27 W white fluorescent lamp was used as a light source and the radiation was performed from the outside of the flask. After 7 hours, the irradiation was terminated and the pyridine was evaporated under reduced pressure to obtain 2.47 g of a light brown, semi-crystalline product.
2) Reduction Step (Hydrogenation)
2.00 g of the semi-crystalline solid obtained in (1) was dissolved in 40 ml of methanol and stirred at 50°C in a hydrogen atmosphere under atmospheric pressure in the presence of 200 mg of 5% palladium-on-carbon catalyst.
After five hours, the reaction was terminated and the mixture was allowed to cool to room temperature. The catalyst was removed by filtration and methanol was evaporated to obtain 2.11 g of white crystals.
The crystals were identified to be 5-phthalimidolevulinic acid by NMR analysis. The yield was 97%.
3) Hydrolysis Step
100 ml of 6 N hydrochloric acid was added to 2.11 g of the white crystals (2), and the mixture was heated under reflux for 5 hours.
After evaporating the hydrochloric acid under reduced pressure, a brown solid product was obtained and dissolved in ethanol. Acetone was added to the solution and the crystals produced were collected by filtration to obtain 0.689 g of 5-aminolevulinic acid hydrochloride. The yield based on Nfurfurylphthalimide was 51%.
NMR spectrum data conformed to 5-aminolevulinic acid hydrochloride
Therapeutic Function Photosensitizer
Biological Activity 5-Aminolevulinic acid (5-ALA) is a precursor in the biosynthesis of porphyrins, including heme. The conversion of 5-ALA to protoporphyrins within tissues produces a photosensitive target that produces reactive oxygen species upon exposure to light.1 In this way, it is used in photodynamic therapy for a range of dermatological conditions, cancers, and other diseases. Also, oral administration of 5-ALA leads to the preferential accumulation of the fluorescent molecule protoporphyrin IX within certain types of cancer cells. This allows fluorescence-based identification of tumor tissue for accurate resection of diseased tissue.
Enzyme inhibitor This key metabolic precursor (FW = 131.13 g/mol; CAS 106-60-5; pKa values = 4.05 and 8.90 at 25°C; Symbol: ALA), also known as daminolevulinic acid, is essential for the biosynthesis of metal ion-binding tetrapyrrole ring systems (porphyrins, chlorophylls, and cobalamins). In non-photosynthetic eukaryotes (animals, insects, fungi, protozoa, and alphaproteobacteria), d-aminolevulinic acid is produced by the enzyme ALA synthase, using glycine and succinyl CoA as substrates. In plants, algae, bacteria, and archaea, it is produced from glutamyl-tRNA and glutamate-1-semialdehyde. 5-Aminolevulinic acid inhibits (R)-3-amino-2- methylpropionate:pyruvate aminotransferase. ALA Phototherapy: Protoporphyrin IX, the immediate heme precursor is a highly effective tissue photosensitizer that is synthesized in four steps from 5- aminolevulinic acid. ALA synthesis is regulated via a feedback inhibition and gene repression mechanism linked to the concentration of free heme. In certain cell and tissue types, addition of exogenous ALA bypasses these regulation mechanisms, inducing uptake and synthesis of photosensitizing concentrations of Protoporphyrin IX, or PpIX. Topical application of ALA to certain malignant and non-malignant skin lesions, for example, can induce a clinically useful degree of lesion-specific photosensitization (e.g., superficial basal cell carcinomas show high response rate (~79%) after a single phototherapy treatment). ALA also induces localized tissue-specific photosensitization, when injected intradermally. In this sense, ALA and its methyl ester (methyl aminolevulinate, or MAL; trade name: Metvix ) are prodrugs that increase the amounts of the active drug (PpIX).
 
5-Aminolevulinic acid Preparation Products And Raw materials
Raw materials ROSE BENGAL-->Palladium hydroxide
Preparation Products SUCCINALDEHYDIC ACID-->2,5-Piperidinedione-->COPROPORPHYRIN III TETRAMETHYL ESTER-->5-Aminolevulinic acid methyl ester hydrochloride

Other products of this supplier

lookchemhot product CAS New CAS Cas Database Article Data Chemical Catalog